# Yorld D-JUNIO DATE OF THE STATE OF THE STATE



## 八尋 明彦

一般財団法人沿岸技術研究センター 客員研究員

日本工営株式会社 技師長・理事



### はじめに

「水の都」 「アドリア海の 女王」などと 称され、世界 中から年間2 千万人の観光 客が訪れる世



写真1<sup>1)</sup> 頻繁に観光客や住民を悩ませる 高潮(サンマルコ広場)

界遺産(1987年文化遺産指定)、26万人が居住するイタリア・ベネチア。そこが近年高潮(アクア・アルタ)の被害を頻繁に受けるようになり、住民や観光客を悩ませている(写真1)。それに対してイタリア政府が全力を挙げて取り組んでいるのが、フラップ式ゲートを活用した"モーゼ計画"である。このWorld Watchingでは過去に4回報告されているが、いよいよ今年12月に完成する運びとなった。他方、早稲田大学、(国法)港湾空港技術研究所、日立造船(株)、及び(一財)沿岸技術研究センターは、共同研究で「津波・高潮用のフラップ式陸閘」を開発した。四国地方整備局が実施した撫養港海岸保全事業において採用され、その成果に対して平成27年度土木学会技術開発賞、日本港湾協会技術賞、及び国土技術開発賞が与えられた。

昨年9月ベネチアにおいて、この共同研究者を中心とした調査団 (団長:清宮理早稲田大教授) が、国土交通省港湾局の後援を得てモーゼ計画の施工・維持管理の委託先である新ベネチア事業連合 (CVN) とワークショップを開催した。さらに公共事業省関係者とも意見交換した。本稿では、その際に入手した最新のモーゼ計画の進捗状況やフラップ式ゲートの運用計画や維持管理計画等について報告したい。

# 壮大な高潮対策 ベネチア・ モーゼ計画 施設完成、間近!



図12) 湾内のベネチア本島と3つの開口部



### 完成間近のモーゼ計画

公共事業省が策定したモーゼ計画(伊語Modulo Sperimentale Ellettromeccanico:電気機械実験装置、 全体事業費約55億€(7,300億円)の背景や経緯は、こ れまで多く報告されているが、改めて図2に示すグラフ をご覧頂きたい。そもそもベネチア人が5世紀にゲルマ ン人の侵略からこのラグーン湿地帯へ避難したことから ベネチアの歴史が始まっている。現在も年間0.4mmの 圧密沈下があり、また近年の地下水くみ上げによる地 盤沈下、さらに地球温暖化による海面上昇によって過 去100年間で相対的に地盤高さが約25cm下がった。こ の状況下で、さらにアフリカ大陸から吹くシロッコの吹き 寄せ等の影響を受けて、現在の本島の地盤高さ80~ 100cm (本計画の湾内における規定潮位110cm) を超え る潮位が頻繁に生じている。2011年から2016年までに 38回 (過去最高値194cm:1966年11月) 発生した。訪 問時も一日豪雨だったために、地下潮位が高いサンマ ルコ広場は排水できず、足首まで滞水した。そこで発

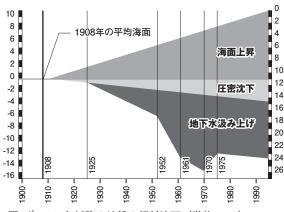



図2<sup>1)</sup> 1908年以降の地盤の相対沈下(単位:cm)




図3 1) モーゼ計画におけるフラップ式ゲート



写真24) フラップ式ゲートによる開口部閉鎖(リド開口部北側)

案されたのが、島内の親水性・景観性確保、海上交 通の確保、及び湾内環境保全の一石三鳥を狙ったフ ラップ式ゲートによる対策(図3)である。耐用年数100 年で設計され、地球温暖化の影響を考慮してフラップ 式ゲートの天端高さに70~80cmを上乗せしている。当 初可動式ゲートの構造形式として15種類検討され、そ の中には和歌山下津港海南地区で検討された浮上式 ゲートもあった。

本計画は2001年に策定、工事は2003年から開始され、 完成予定時期 (2012年) は延びたが、今年2018年12月 に完成することとなった。昨年9月の訪問時には、全て の基礎ケーソン及び閘門の設置は終了しており、3箇所 の開口部 (inlet) (図1、写真2) に設置予定の78個のフ ラップのうち40個は設置済で、残りはリド開口部で20個、 キオッジャ開口部で18個となっていた。ジャッキアップ船 やガントリークレーン船を使用して設置された。



### フラップ式ゲートの運用計画

フラップ式ゲート閉鎖時の湾内潮位は、潮位偏差に 加えて降雨、風波、フラップ間の隙間7cm、及び基礎 ケーソン間の隙間15cmからの流入量などの影響を受け る。このため高潮が予想される場合には、5日前から定 点における潮位を始め風、雨量等を監視し36時間前か ら24時間体制で、前述した潮位110cmをベネチア湾内 の管理水準 (図4) にして、フラップ式ゲートを操作する 運用計画となっている。完成以降3年間、これに沿って 試験的に運用し、2022年に本格的に運用する予定であ る。それでも潮位110cmに抑えても全島の12%は浸水す ることになり、一部地区では浸水を容認している。

フラップ式ゲートは、閉鎖時の扉体角度を常に45度に 保持するために扉体の空気量を調整して制御する。こ のため扉体には流量計、傾斜計(各扉体に7個)など 多数のセンサーが取り付けられている。

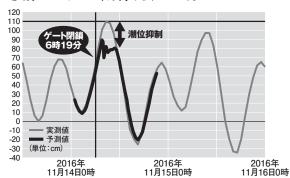



図42) シミュレーションによるラグーナ内のある地点における 潮位抑制効果



### フラップ式ゲートの維持管理計画

完成後3年間はCVNが、上記の運用や維持管理業 務を担当するが、その後は入札により企業体を選定す ることになる。フラップ本体は塗装と電気防食で腐食を 防止しているが、予備を用意して5年ごと簡易な検査及 び補修を行い、15年ごとにベネチア北東部にかつては 造船所として使われていたアルセナール地区において 本格的な補修を行う計画である。訪問時に開口部の長 さが3つの開口部で最も長いリド開口部を視察した。延 長420mの北バリア、同400mの南バリアの中間部に人工 島を建設しコントロールルームを配置していた。フラップ



写真35) 海面下の基礎ケーソ ン内にある維持管理 用通路

本体を開閉させるために、 1扉体当たり2個のヒンジ が設置され空気の注入に より浮上させる。このため 海面下の基礎ケーソン内 部には空気や水の供給 経路とヒンジ部分のメン テナンスのために作業員 用のトンネル通路(写真3) が2本配置(1本は予備用) されていた。



### おわりに

わが国でも高潮・高波、津波対策として海底設置型 の可動式ゲートや防波堤の開発は重要である。モーゼ 計画における今後のゲート運用や維持管理の実績は有 用な情報であるため、先方の関係者と引き続き人的、 技術的な交流を続けていきたい。今回ベネチアは公私 合わせて4回目の訪問であった。ウォーターフロント開発 のモデルと言うべき愛するベネチアが、モーゼ計画の効 果が十分に発揮され、今後とも世界遺産として永遠に 存続していくことを切に祈るものである。

### [参考文献]

- 1) Ministero delle Infrastrutture e der Transporti, Venice/Mose
- 2) Eng. Stefano Libardo, Territorial data information Service Department Management - MOSE
- Operation Room, 18 September 2017
- 3) THE ARSENALE RESTORATION The Mose gates maintenance system, 18 September 2017
- 4) COMAR, Installation of Gates, 19 September 2017
- 5) 日立造船(株)、ベネチア出張報告書、2017.9.28